
Digital Object Identifier (DOI) 10.1140/epjc/s2005-02240-y
Eur. Phys. J. C 41, 421–426 (2005) THE EUROPEAN

PHYSICAL JOURNAL C

Non-minimal coupling to a Lorentz-violating background
and topological implications

H. Belich1,2,a, T. Costa-Soares2,3,4,b, M.M. Ferreira Jr.2,5,c, J.A. Helayël-Neto2,3,d
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Abstract. The non-minimal coupling of fermions to a background responsible for the breaking of Lorentz
symmetry is introduced in Dirac’s equation; the non-relativistic regime is contemplated, and the Pauli
equation is used to show how an Aharonov–Casher phase may appear as a natural consequence of the
Lorentz violation, once the particle is placed in a region where there is an electric field. Different ways of
implementing the Lorentz breaking are presented and, in each case, we show how to relate the Aharonov–
Casher phase to the particular components of the background vector or tensor that realizes the violation
of Lorentz symmetry.

1 Introduction

In the beginning of the nineties, Carroll, Field and Jackiw
[1] have considered a Chern–Simons-like odd-CPT term
able to induce the violation of Lorentz symmetry in
(1 + 3) dimensions. In a more recent context, some au-
thors [2] have explored the possibility of Lorentz symme-
try breaking in connection with string theories. Models
with Lorentz and CPT breakings were also used as a low-
energy limit of an extension of the standard model, valid at
the Planck scale [3]. In this case, an effective action is ob-
tained that incorporates CPT and Lorentz violation and
keeps unaffected the SU(3)×SU(2)×U(1) gauge structure
of the underlying theory. This fact is of relevance in that
it indicates that the effective model may preserve some
properties of the original theory, like causality and sta-
bility. Though of Lorentz symmetry is closely connected
to stability and causality in modern field theories, the ex-
istence of a causal and unitary model with violation of
Lorentz symmetry is in principle possible and meaningful
on physical grounds.

In the latest years, Lorentz-violating theories have
been investigated under diverse perspectives. In the con-
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text of N = 1 supersymmetric models, there have ap-
peared two proposals: one which violates the algebra of
supersymmetry (first addressed by Berger and Kostelecky
[4]), and another that preserves the (SUSY) algebra and
yields the Carroll–Field–Jackiw model by integrating on
Grassmann variables [5]. The study of radiative correc-
tions arising from the axial coupling of charged fermions
to a constant vector has raised a controversy on the pos-
sible generation of the Chern–Simons-like term that has
motivated a great deal of work in the literature [14]. The
rich phenomenology of fundamental particles has also been
considered as a natural scenario for the search of indica-
tions of the breaking of these symmetries [8,9], imposing
stringent limitations on the factors associated with such
a violation. The traditional discussion concerning space-
time varying coupling constants has also been addressed
in the light of Lorentz-violating theories [10], with inter-
esting connections with the construction of supergravity.
Moreover, measurements of radio emission from distant
galaxies and quasars put in evidence that the polarization
vectors of the radiation emitted are not randomly oriented
as naturally expected. This peculiar phenomenon suggests
that the space-time intervening between the source and
the observer may be exhibiting some sort of optical ac-
tivity (birefringence), whose origin is unknown [11]. Dif-
ferent proposals for implementation of Lorentz violation
have been recently considered; one of them consists of ob-
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taining it from the spontaneous symmetry breaking of a
matter vector field [12].

Our approach to the Lorentz breaking consists of
adopting the 4-dimensional version of a Chern–Simons
topological term, namely εµνκλvµAνFκλ (also known as
the Carroll–Field–Jackiw term [1]), where εµνκλ is the 4-
dimensional Levi-Civita symbol and vµ is a fixed 4-vector
acting as a background. A study of the consequences of
such breaking in QED has been extensively analyzed in
the literature [13,14]. An extension of the Carroll–Field–
Jackiw (CFJ) model to include a scalar sector that yields
spontaneous symmetry breaking (Higgs sector) was re-
cently developed and analyzed, resulting into an Abelian–
Higgs CFJ electrodynamics (AHCFJ model) with viola-
tion of Lorentz symmetry [15]. Afterwards, the dimen-
sional reduction of the CFJ and AHCFJ models (to 1 + 2
dimensions) were successfully carried out in [16,18], re-
spectively, yielding a planar Maxwell–Chern–Simons and
a Maxwell–Chern–Simons–Proca electrodynamics mixed
to a scalar field (responsible for the Lorentz violation). It
should be here stressed that these planar models do not
present the causality and unitarity problems that affect
the original CFJ and AHCFJ models; instead, they set
out as entirely consistent planar theories, whose proper-
ties have recently been investigated under different aspects
[19,20].

Topological effects in quantum mechanics are phenom-
ena that present no classical counterparts, being associ-
ated with physical systems defined on a multiply con-
nected space-time. Specifically, considering a charged par-
ticle that propagates in a region with external magnetic
field (free force region), it is verified that the corre-
sponding wave function may develop a quantum phase:
〈b|a〉in A = 〈b|a〉A=0.

{
exp

(
iq
∫ b

a
A.dl

)}
, which describes

the real behavior of the electron propagation. This is-
sue has received considerable attention since the pio-
neering work by Aharonov and Bohm [21], where they
demonstrate that the vector potential may induce physi-
cally measurable quantum phases even in a field-free re-
gion, which constitute the essence of a topological effect.
The induced phase does not depend on the specific path
described by the particle, neither on its velocity (non-
dispersiveness). Instead, it is intrinsically related to the
non-simply connected nature of the space-time and to the
associated winding number. Many years later, Aharonov
and Casher [22] argued that a quantum phase also ap-
pears in the wave function of a neutral spin-1

2 particle
with anomalous magnetic moment, µ, subject to an elec-
tric field arising from a charged wire. This is the well-
known Aharonov–Casher (A-C) effect, which is related to
the A-B effect by a sort of duality transformation.

This effect can be investigated by taking into account
the non-relativistic limit of the Dirac’s equation [23] with
the Pauli-type non-minimal coupling. Concerning these
phase effects, other developments over the past years have
raised a number of interesting questions; in connection to
the latter, locality and topology are being invoked in a
more recent context [24]. The local or topological nature
of the generated phase can change according to each situa-

tion, as in the case of the A-B effect in molecular systems,
which is neither local nor topological, being closer to the
A-C effect. For instance, the work of [25] discusses the
A-C phase in a planar model in order to demonstrate
that this effect is essentially non-local in the context of
a non-relativistic superconductor. The formal correspon-
dence between the A-B and A-C phases at a microscopic
level, as long as their topological nature is concerned, is
considered in [26]. In the context of ultra-cold atoms, it
was shown that the vortex model of Bose–Einstein con-
densates is described by a Lagrangian with an A-C extra
term [27].

In this work, we focus on the investigation of non-
minimal coupling terms in the context of Lorentz-violating
models involving some fixed background and the gauge
and fermion fields. The main purpose is to figure out
whether such new couplings are able to induce the A-C
effect. In this sense, we follow a single procedure: writing
the spinor field in terms of its small and large components,
we arrive at the Pauli equation (once the non-relativistic
limit of the Dirac equation is considered) and identify the
generalized canonical momentum, which in this approach
plays a central role for the determination of the induced
quantum phases.

This paper is organized as follows. In Sect. 2, several
kinds of Lorentz-violating non-minimal couplings are an-
alyzed in connection with the possibility of generating an
A-C quantum phase. Initially, we consider the presence of

the non-minimal term, igvν
∼
Fµν , in the covariant deriva-

tive, to account for the coupling of a neutral test particle
to the Lorentz breaking background. In the sequel, work-
ing out the non-relativistic limit, we derive the Pauli equa-
tion and write down the generalized canonical momentum,
whose composition may indicate the appearance of an A-
C phase. In this case, the background 3-vector plays the
role of the magnetic moment of the neutral particle. As a
second case, we regard a non-minimally torsion-like (γ5-
type) coupling with the Lorentz-violating background in
the context of the Dirac equation. No A-C phase is gen-
erated in this case. In another situation, a background
tensor (Tµν) responsible for the violation of Lorentz sym-
metry is non-minimally coupled to the electromagnetic
and Dirac fields. It is observed that the anti-symmetric
part of this tensor induces an A-C phase. As a final inves-
tigation, we simultaneously considered the non-minimal
Lorentz breaking coupling and the (Pauli) standard non-
minimal coupling in order to study the competition be-
tween these terms for the generation of an A-C phase. It
has been then verified that only the standard Pauli mag-
netic coupling yields an A-C effect. Our final discussion is
presented in Sect. 3.
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2 Lorentz-violating non-minimal couplings,
Pauli equation
and the Aharonov–Casher phase

2.1 Non-minimal coupling to the gauge field
and background

The first case to be analyzed starts with the gauge invari-
ant Dirac equation,

(iγµDµ − m)Ψ = 0, (1)

where the covariant derivative with non-minimal coupling
is chosen to be

Dµ = ∂µ + ieAµ + igvν
∼
Fµν , (2)

whereas vµ is a fixed 4-vector acting as the background
which breaks the Lorentz symmetry [1]. The explicit rep-
resentation of the γ-matrices used throughout is listed be-
low:

γ0 =

(
1 0
0 −1

)
,
→
γ =

(
0

→
σ

−→
σ 0

)
,

γ5 =

(
0 1
1 0

)
, (3)

where −→σ = (σx, σy, σz) are the Pauli matrices. In order to
simplify the calculations, the spinorΨ should be written in

terms of small (χ) and large (φ) 2-spinors, Ψ =

(
φ

χ

)
,

so that (1) splits into two equations for φ and χ:(
E − eϕ − g−→v · −→

B
)

φ

− −→σ · (−→p − e
−→
A + gv0−→B − g−→v × −→

E )χ
= mφ, (4)

−
(
E − eϕ − g−→v · −→

B
)

χ

− −→σ · (−→p − e
−→
A + gv0−→B − g−→v × −→

E )φ
= mχ. (5)

Writing the small component in terms of the large one
(in the non-relativistic limit), one has

χ =
1

2m
−→σ ·

(−→p − e
−→
A + gv0−→B − g−→v × −→

E
)

φ. (6)

Replacing such a relation in (5), one achieves the associ-
ated Pauli equation for the large component φ, namely(

E − eϕ − g−→v · −→
B
)

φ

− 1
2m

(−→σ · −→
Π
)(−→σ · −→

Π
)

φ = mφ, (7)

where the canonical generalized moment is defined as

−→
Π =

(−→p − e
−→
A + gv0−→B − g−→v × −→

E
)

. (8)

The presence of the term g−→v × −→
E , which possesses a

non-vanishing rotation, is the aspect that determines the
induction of the Aharonov–Casher effect. Indeed, the 3-
vector background plays the role of a sort of magnetic
dipole moment (−→µ = g−→v ) that gives rise to the A-C phase
associated with the wave function of a neutral test particle
(e = 0), for which the Aharonov–Bohm effect is absent. In
the case of a charged particle, the non-minimal coupling of
(2) brings about simultaneously the A-B and A-C phases.
For a neutral particle under the action of an external elec-
tric field, the A-C phase induced as a consequence of the
Lorentz symmetry violation read ΦAC =

∮
C

(g−→v × −→
E ) · −→dl

where C is a closed path.
With this result, we can comment on another possi-

ble non-minimal coupling, which has not been included
in the covariant derivative (2), ihvνFµν , with h being the
coupling constant. It does not yield an A-C phase, but it
rather implies an extra phase involving the magnetic field
and it takes the form −→v × −→

B .
To write the Hamiltonian associated with the Pauli

equation exhibited above, one should use the well-known
identity (−→σ · −→

Π
)2

=
−→
Π 2 + i−→σ ·

(−→
Π × −→

Π
)

, (9)

which after some algebraic manipulations leads to

H =
1

2m

−→
Π 2 + eϕ − e

2m
−→σ · (

−→∇−→
A ) (10)

+
1

2m
gv0−→σ · (

−→∇−→
B ) +

g

2m
−→σ · −→∇(−→v −→

E ),

where ϕ ≡ A0.
We would like here to point out the work of [28],

where the authors present a method for deriving the non-
relativistic limit of free massive fermions from a rather
general Lorentz-violating Lagrangian, by using the Foldy–
Wouthuysen expansion. The result we have shown above,
and the ones we shall present in the forthcoming cases,
agree with the non-relativistic limits worked out in [28],

by suitably identifying the combination eAµ + igvν
∼
Fµν

with the parameter aµ in [28].

2.2 Torsion non-minimal coupling
with Lorentz violation

In this section, one deals again with (1), now considering
another kind of non-minimal coupling,

Dµ = ∂µ + eAµ + igaγ5v
ν

∼
Fµν , (11)

where the Lorentz-violating background, vµ, appears cou-
pled to the gauge field by means of a torsion-like term of
chiral character.

Writing the spinor Ψ in terms of the so-called small
and large components in much the same way as in the
latter section, there appear two coupled equations for the
2-component spinors φ, χ,
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[
(E − eϕ) + −→σ ·

(
gav0−→B − ga

−→v × −→
E
)]

φ

− [−→σ ·
(−→p − e

−→
A
)

+ ga
−→v · −→

B ]χ

= mφ, (12)

−
[
(E − eϕ) + −→σ ·

(
gav0−→B − ga

−→v × −→
E
)]

χ

+ [−→σ ·
(−→p − e

−→
A
)

+ ga
−→v · −→

B ]φ

= mχ, (13)

from which we can read the small component in terms of
the large one:

χ =
1

2m

[−→σ ·
(−→p − e

−→
A
)

+ ga
−→v · −→

B
]
φ. (14)

From (13) and (14), one obtains the corresponding Pauli
equation,(

E − eϕ + −→σ ·
(
gav0−→B − ga

−→v × −→
E
))

φ

−
[−→σ ·

(−→p − e
−→
A
)

+ ga
−→v · −→

B
]

× 1
2m

[−→σ ·
(−→p − e

−→
A
)

+ ga
−→v · −→

B
]
φ

= mφ, (15)

whose structure reveals the canonical generalized moment
by the usual relation,

−→
Π =

(−→p − e
−→
A
)

. Here, one notices
that the non-minimal coupling gives rise only to an energy
contribution denoted by Hnm and given by

Hnm = −→σ ·
(
gav0−→B − ga

−→v × −→
E
)

+
1

2m

(
ga

−→v · −→
B
)2

+
ga

2m
−→σ ·

(−→p − e
−→
A
)−→v · −→

B

+
ga

2m
−→v · −→

B−→σ ·
(−→p − e

−→
A
)

, (16)

so that the non-relativistic Hamiltonian becomes H =
1

2m

−→
Π 2 + eϕ − e

2m
−→σ · ∇ × −→

A + Hnm.
We can thus conclude that, if the fixed background is

associated with the vector component of the torsion, as
done in the work of [30], no A-C phase is induced. The
coupling to the torsion contributes to the interaction en-
ergy, but contrary to the case contemplated in the previous
section, the γ5-type non-minimal coupling does not bring
about any A-C phase.

2.3 Lorentz-violating non-minimal coupling
to a tensor background

The starting point now is an extended Dirac equation min-
imally coupled to electromagnetic field, explicitly given by

(iγµDµ − m + iλ1TµνΣµν + iλ2TµκFκ
νΣµν)Ψ = 0, (17)

where the covariant derivative is the usual one, Dµ = ∂µ+
eAµ, and the bilinear term, Σµν = i[γµ, γν ]/2, is written
as

Σ0i = i

(
0 −→σ
−−→σ 0

)
, Σij = εijkσk

(
1 0
0 1

)
.

Notice that in this case, the skew-symmetric tensor
Tµν is the element responsible for the Lorentz violation
at the level of the fermionic coupling. In analogy to what
occurs when fermion couplings violate Lorentz symmetry,
by means of a term of the type bµΨγµγ5Ψ [31], we here
propose Lorentz violation by taking into account fermionic
couplings in the form ΨΣµνΨTµν and ΨΣµνΨFµκTκ

ν .
Following the same procedure as previously adopted,

we write down 2-component equations:

(E − eϕ) φ − →
σ ·
(−→p − e

−→
A
)

χ + 4iλ1T0iσ
iχ

+ λ1Tijεijkσkφ + 2iλ2T
0iFijσ

jχ

+ T i0F0kεijkσjφ + λ2T
ijFjkεijkσjφ + 2iλ2T

ijFj0σ
iχ

= mφ, (18)

(E − eϕ) χ +
→
σ ·
(−→p − e

−→
A
)

φ + 4iλ1T0iσ
iφ

+ λ1Tijεijkσkχ + 2iλ2T
0iFijσ

jφ

+ T i0F0kεijkσjχ + λ2T
ijFjkεijkσjχ + 2iλ2T

ijFj0σ
iφ

= mχ. (19)

The pair of the 2-component equations above involves
both the external electric and magnetic fields. As the A-
C effect is the main subject of interest of this investiga-
tion, we shall consider a vanishing magnetic field, Fij = 0,
which allows one to achieve the following expression relat-
ing small and large components:

χ =
1

2m

[−→σ ·
(−→p − e

−→
A
)

+ λ14iToiσ
i

+ λ22i(
−→
T × −→

E )iσ
i
]
φ, (20)

where we used T ijFj0 = (
−→
T × −→

E )i. By factoring out the
Pauli matrices, −→σ , the following canonical moment can be
identified:

−→
Π =

(−→p − e
−→
A − 4λ1

−→
T 1 − 2λ2

−→
T 2 × −→

E
)

, (21)

where we have distinguished the “electric” and the “mag-
netic”components of the tensor, respectively defined by
T0i =

−→
T 1, T ij =

−→
T 2.

Replacing this in (20), we get the following equation
for the large spinor component:(

E − eϕ − λ1Tkjεijkσi + λ2T
j0F0kεijkσi

)
φ

− 1
2m

(−→σ · −→
Π )(−→σ · −→

Π )φ = mφ. (22)

Here again two kinds of quantum phases appear, one gov-
erned by λ1 and the other by λ2. However, having in mind
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that our purpose is to clarify how the A-C phase can
emerge, we can take λ1 = 0. The λ2̇-term, with the com-
ponentof Tµν , gives rise to the A-C contribution. Should
we take λ1 = 0, the Lorentz breaking term would not im-
pose Tµν to be skew-symmetric. Indeed, if Tµν were taken
to be a general tensor, the conditions for the A-C to ap-
pear (no magnetic field but only an external electric field)
would anyhow select the anti-symmetric magnetic compo-
nent, Tij = −Tji; the A-C phase is therefore induced by
the anti-symmetric piece of Tµν .

In this case, the Hamiltonian is given as follows:

H =
1

2m

−→
Π 2 + eϕ − e

2m
−→σ · −→∇ × −→

A (23)

+
1

2m
−→σ · −→∇ ×

(
4iλ1

−→
T 1 + 2iλ2

−→
T 2 × −→

E
)

.

2.4 Competition between Lorentz-preserving
and Lorentz-violating non-minimal couplings

In this section, we would like to compare the specific non-
minimal coupling with Lorentz violation exhibited in (1)
and (2) with the standard non-minimal coupling that gen-
erates the usual Aharonov–Casher effect, in such a way as
to verify how these terms are related to the development
of an A-C phase.

The gauge invariant Dirac equation from which we
shall compute the Pauli equation is

(iγµDµ − m + fΣµνFµν)Ψ = 0, (24)

where the covariant derivative with non-minimal coupling
is the one given in (2). Following the same procedure al-
ready adopted, we shall work out the non-relativistic limit
of the Dirac equation. Writing the spinor Ψ in small and
large components, from (24) there result two equations:[

E − eϕ − g−→v · −→
B +

(
2fΣ0iF0i + fΣijFij

)]
φ

−−→σ ·
(−→p − e

−→
A + gv0−→B − g−→v × −→

E
)

χ

= mφ, (25)[
−(E − eϕ − g−→v · −→

B ) +
(
2fΣ0iF0i + fΣijFij

)]
χ

+−→σ ·
(−→p − e

−→
A + gv0−→B − g−→v × −→

E
)

φ

= mχ. (26)

In the non-relativistic limit, there appears the follow-
ing Pauli equation:(

E − eϕ − g−→v · −→
B + fεijkσkFij

)
φ

−
(−→σ · −→P

) 1
2m

(−→σ · −→P
)

= mφ, (27)

where
−→P =

(−→p − e
−→
A + gv0−→B − g−→v × −→

E − 2if
−→
E
)

.

Making use of the identity (9), we can observe that
only the f coupling contributes to the canonical conju-
gated momentum, given by

−→
Π =

(−→p − −→µ × −→
E
)

. (28)

As a consequence, it is observed that only the standard
Pauli coupling contributes to the A-C phase. The Lorentz
breaking non-minimal coupling in the covariant derivative
contributes here only with an extra energy term, in the
form 4fg−→σ ·

((−→v × −→
E
)

× −→
E
)
; no phase effect is induced

by the Lorentz-violating background vector.

3 Final discussion

In this paper, we have carried out an analysis of the role
of possible Lorentz-violating couplings in connection with
the Aharonov–Casher phase developed by an electrically
neutral particle. Usually, this phase is induced on a neu-
tral particle endowed with a non-trivial magnetic moment
interacting with an external electric field generated by an
axial charge distribution, but it may also arise in other
theoretical contexts. Indeed, it has been here argued that
in the case of a non-minimal coupling to the fixed back-
ground vµ (responsible for the Lorentz breaking), an A-
C phase is developed even by neutral spinless particles,
stemming from the term g−→v × −→

E (present in the canon-
ical momentum), where g−→v plays the role of the intrin-
sic magnetic moment of the test particle. This is in close
analogy to a similar result in (1 + 2)-dimensional electro-
dynamics: charged scalars, non-minimally coupled to an
electromagnetic field, acquire a magnetic dipole moment
[32]. In our case, the situation is more drastic: a neutral
and spinless particle acquires a magnetic moment, g−→v , as
a by-product of the non-minimal Lorentz-violating cou-
pling. Other possibilities have been taken into account as
well, such as the non-minimal coupling to the torsion ten-
sor; in this case no A-C phase comes out; instead, we get
an extra energy contribution due to the coupling of the
spin to the Lorentz-violating background and the electric
and magnetic fields. Moreover, for Lorentz violation at the
level of the fermionic couplings, parametrized by a skew-
symmetric tensor, Tµν , it was verified that such a coupling
may yield an A-C phase if the magnetic component of Tµν ,
T ij =

−→
T 2, is non-vanishing. The phase generated here is

not obviously shared by scalar particles, as the kind of
non-minimal coupling leading to the phase is specific for
spin- 1

2 particles. Actually, the only non-minimal coupling
universal for all types of particles, regardless of their spin,
is the one given in the covariant derivative according to
(2). Finally, a remarkable result is the competition be-
tween two non-minimal couplings which separately yield
the A-C phase. The case investigated involves the non-
minimal standard Pauli coupling and the non-minimal
coupling to vµ analyzed in the first section. Once both
interactions are switched on, it is then observed that the
A-C phase that survives is the usual one: the one stem-
ming from the term −→µ × −→

E , where −→µ is the canonical
magnetic moment of the spin- 1

2 particle.
So, as a general outcome, we can state that an interest-

ing effect of breaking Lorentz and CPT symmetries is the
possibility to have direct consequences on the A-C phase
for test particles, once the latter couple non-minimally
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to the vector or tensor background that accomplishes the
breaking. This is a feature of Lorentz-violating gauge mod-
els not yet discussed in the literature. We then argue that
in this scenario even neutral scalar particles may acquire
a non-trivial A-C phase once acted upon by an external
electric field, and we attribute to the Lorentz-violating
background vector, non-minimally coupled to the specific
test particle, the property of inducing the magnetic dipole
moment that couples to the electric field to give rise to the
A-C phase. This result is very similar to a mechanism that
takes place in planar gauge theories. Indeed, in (1+2)D, a
number of works [33] have shown how a scalar particle may
acquire a non-trivial magnetic moment at the expense of a
non-minimal coupling to the Maxwell field. We can actu-
ally compare our present result to the (1+2)-dimensional
counterpart if the violation of the Lorentz symmetry takes
place due to an external 4-vector background. The latter
sets up, effectively, a (1+2)-dimensional world for the in-
teracting particle, and the non-minimal coupling proposed
in (2) selects the electric component of the external elec-
tromagnetic field, which allows one to identify the com-
bination −g−→v as playing the role of the spin of the test
particle.

To conclude, we would like to mention that, by con-
sidering the very general Lagrangian with Lorentz- and
CPT -violating terms as proposed by Kostelecký and Lane
in [28], it would be worthwhile to select all those specific
terms that break CPT and then analyze how they may in-
duce different A-C phases for a particle and its correspond-
ing anti-particle. This study may reveal another interest-
ing and relevant aspect of the standard-model extensions
stemming from the breakdown of the Lorentz symmetry.
This question is under investigation and we shall be soon
be reporting on it elsewhere [34].
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(1999); J.M. Chung, B.K. Chung, Phys. Rev. D 63, 105015
(2001); J.M. Chung, Phys. Rev. D 60, 127901 (1999); M.
Perez-Victoria, Phys. Rev. Lett. 83, 2518 (1999); G. Bon-
neau, Nucl. Phys. B 593, 398 (2001); M. Perez-Victoria,
JHEP 0104, 032 (2001)
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